Battery Energy Storage Applications Micro-grids & SWER lines

Owen Lock owen.lock@sandc.com +61 (0) 423 529 608

Who is S&C?

- Specialists in electric power since 1911
- True R&D focused innovators of electrical T&D technologies
- Headquartered in Chicago, USA
- 100% Employee owned
- Financially-stable
- 2300 employees globally

S&C and Energy Storage

- Globally recognised technological innovators of Battery Energy Storage
- MW Sized projects in service since 2006
- 300+MW of grid connected large scale inverters in service
- Integrated with more batteries than any other PCS manufacturer

Industry leaders since it's inception

- Past chairman of IEEE Emerging Technologies committee
- Executive Director of the Electricity Storage Association and past chairman of the board
- Member of the US Department of Energy Electricity Advisory Committee and Chairman of the Energy Storage Sub-committee.

Hierarchy of Grid-Connected Energy Storage

Centralised Energy Storage Applications

- Infrastructure upgrade deferment
- Peak Shaving
- Network support
 - Voltage regulation
 - Frequency Regulation
 - Power Factor control

- Increasing penetration of highly variable generation such wind and solar
- Large Scale UPS
- Dynamic Islanding
- Micro-grid support

Distributed Energy Storage applications Islanding SWER line support Peak Shaving Network support pf correction Voltage regulation Renewable Power Factor control **PV** integration **Peak Shaving UPS/Dynamic Islanding** Voltage Control Dynamic Islanding Micro-grid support

Battery Experience

- NaS (Sodium Sulphur)
- Lithium Ion (5 different manufacturers)
- NaNiCI (Sodium Nickel Chloride)
- Ultrabattery (Lead acid/super capacitor combination)
- Flow Batteries

Santa Rita Jail

- Location Dublin California USA
- 4000 inmates
- 3rd largest Jail in California, 5th largest in USA
- Highly automated facility
- 100% of electrical load is critical
- Peak Loads
 - Summer 2.8MW
 - Winter 1.8MW

Santa Rita Jail

- Grid-connected dynamically islanding 4MW micro-grid with multiple on-site generation sources and 2MW Battery Energy Storage System
- On site generation includes
 - Diesel Generators
 - Fuel Cells
 - Wind Turbines
 - Solar (PV)
 - Lithium Ion Battery

Project Purpose

- Demonstrate CERTS Micro-grid
- Demonstrate a viable integration of renewable, distributed energy resources
- Use commercially available technology
- Reduce peak load of utility distribution feeder
- Increase grid efficiency and security
- Meet critical customer reliability requirements

SRJ Simplified Single Line Diagram

PV Solar

- 1.2MW or rooftop solar
- 1.2MW of "tracking" solar

Fuel Cells

- Natural Gas
- 1MW Power output
- First MW scale fuel cell in USA
- 8,000,000kWh of power p/a
- 1.4MMBtu of heat (18% of Jails needs

Wind Turbines

- 24kW total
- 10 x 2.4kW Turbines
- Main reason for existence is to test the integration with microgrid

Diesel Generators

- 2.4MW total
- 2 x 1.2MW sets
- Started when battery SOC falls below threshold
- Stopped when battery SOC reaches 100%
- Also used as "2nd layer" backup

Battery

- Manufactured by BYD
- Lithium Iron Phosphate
- 2MW, 4MWh
- 4 x 500kW Modules
- Battery Management System by BYD

S&C Purewave 2MW SMS "ties it all together"

- CERTS Algorithm for integration of distributed generation sources, electrical protection and seamless transfer to and from utility grid
- Voltage Support
- Frequency regulation
- Sophisticated diesel generator integration
- Peak shaving to reduce demand tariff
- Store excess generation from renewables
- Arbitrage
- Bi-Directional power flow at PCC

Dynamic Islanding

- UPS like functionality
- Seamless transfers (8ms) to and from the Utility grid
- High Voltage (12kV) Static Switch provides fast disconnection and re-connection to utility grid
- S&C PureWave® SMS
 - Synchronises load to grid
 - Ramp-loads grid & micro-grid

Dynamic Islanding Challenges

- Island must be created very quickly
- Protection of down-stream loads with low fault current
- Load sharing between generators
- Voltage control
- Frequency control
- Load shedding

Distributed Energy Resource Management System DERMS – Commercially driven controls

- Estimates energy output of Distributed Energy Resources for upcoming time-of-use period
- Estimates stored energy available for upcoming time-of-use period (peak and partial peak)
- Estimates energy required to charge storage system in upcoming timeof-use period (off peak)
- Estimates energy required from utility for upcoming time-of-use period
- Controls power flow at utility PCC or energy storage system to minimize energy and demand charges

CERTS Micro-Grid

- Consortium for Electrical Reliability Technology Solutions
- Formed in1999
- Consortium members
 - Electric Power Group
 - Lawrence Berkeley National Laboratory
 - Oak Ridge National Laboratory
 - Pacific Northwest National Laboratory
 - National Science Foundation's Power Systems Engineering Research Center
 - SandiaNational Laboratories.

What is the CERTS Micro-Grid concept

- Algorithms and Protocols for the integration of Distributed Energy Resources (DER) into the grid
- Enables Miro-grid to present itself to the distribution grid as a single, self controlled entity
- Anti-islanding v's islanding
- Peer to peer
- Plug and play

3 Advanced DER integration techniques

Technique 1.

- Automatic and seamless transfer between grid-connected and islanded modes of operation
 - Grid connected with DER in voltage source mode at all times
 - HV Static Switch for fast disconnect
 - Seamless return to the grid achieved by frequency difference

3 Advanced DER integration techniques

Technique 2.

- Electrical protection within the micro-grid
 - During grid connect operation, allow time for static switch to disconnect from the utility
 - During Islanded mode, protection that is <u>not</u> based on detection of high fault current must be employed
 - Load shedding using protection devices

3 Advanced DER integration techniques

Technique 3.

- Voltage and frequency stability under islanded conditions
 - Voltage is regulated at each source connection
 - Sources rely on frequency droop to share load
 - Theoretically an infinite number of sources can be added to the micro-grid

Conclusion

- Grid connected Battery Energy Storage is about a lot more than just the battery.
 - Large scale grid and micro-grid integration is complex
 - Renewables integration is equally challenging with large systems
 - Recognising the commercial benefits of Energy Storage is complex
 - Intelligently controlled inverters offer many benefits other than just charging and discharging the battery for peak-shaving
 Most electrical utilities and industry analysts agree that Battery Energy Storage will form an integral part of future grids

Supporting SWER lines with Energy Storage

- SWER problems Power Cuality
 - Highly resistive conductor
 - Long runs
 - Loads are becoming more lumpy
 - Rooftop PV
 - Overloading
- Traditional solutions are VERY costly
 - Additional poles and wires over long distances
 - Splitting of SWER network
 - Islanded/off-grid networks

SWER Line Support using Energy Storage

- One of, if not THE most commercially viable application for Battery Energy Storage at this point in time
- Battery used for peak-shaving and capture of PV energy
- Voltage control through reactive AND real power
 - Use VAR's to control voltage where possible
 - Use battery when necessary
 - 4-quadrant inverter enables real and reactive power at the same time
- Dynamic Islanding –UPS like functionaliy

Peak Shaving on SWER line

Voltage Support on SWER line

Combination of Real & Reactive power to Peak Shave AND Control Voltage

SWER Line Support using S&C CES

- Ride through outages (UPS like islanding functionality)
- Multiple units on one SWER line can communicate to cooperatively support line
- Capture energy generated through PV and use it to <u>stabilise</u> the line

Multiple battery options

- Underground Lithium Ion by Kokam
 - Totally sealed, submersible battery tank
 - No moving parts
 - Minimise temperature cycles, maximising battery life

Multiple battery options

- Above ground Lithium Ion by SAFT
 - Rated up to 50 degrees Celsius ambient
 - Fan cooling –No A/C
 - IP54 Stainless Steel enclosure

Multiple battery options

- Above ground Sodium Nickel Chloride
 - Convection cooled no moving parts
 - Can withstand ambient temperature of +60C
 - Proven technology with 15+ year life

Questions?

